УДК 512.542

ОБ ОДНОМ ОБОБЩЕНИИ ЛОКАЛЬНЫХ ФОРМАЦИЙ А.Н. Скиба

Гомельский государственный университет им. Ф. Скорины

ON ONE GENERALIZATION OF THE LOCAL FORMATIONS

A.N. Skiba

F. Scorina Gomel State University

Все рассматриваемые в работе группы предполагаются конечными. Пусть $\sigma = \{\sigma_i \mid i \in I\}$ — некоторое разбиение множества всех простых чисел \mathbb{P} . Натуральные числа n и m называются σ -взаимно простыми, если для всякого такого σ_i , что $\sigma_i \cap \pi(n) \neq \emptyset$, мы имеем $\sigma_i \cap \pi(m) = \emptyset$. Пусть t > 1 — натуральное число и пусть \mathfrak{F} — класс групп. Тогда мы говорим, что \mathfrak{F} является: (i) \mathcal{S}_{σ}^i -замкнутым (соответственно слабо \mathcal{S}_{σ}^i -замкнутым), если \mathfrak{F} содержит всякую конечную группу G, удовлетворяющую следующим условиям: (1) G содержит такие подгруппы $A_1, \ldots, A_t \in \mathfrak{F}$, что $G = A_i A_j$ для всех $i \neq j$; (2) индексы $|G:N_G(A_1)|, \ldots, |G:N_G(A_t)|$ (соответственно индексы $|G:A_1|, \ldots, |G:A_{t-1}|$, $|G:N_G(A_t)|$) попарно σ -взаимно просты; (ii) \mathcal{M}_{σ}^i -замкнутым (соответственно слабо \mathcal{M}_{σ}^i -замкнутыми), если \mathfrak{F} содержит всякую конечную группу G, удовлетворяющую следующим условиям: (1) G содержит такие модулярные подгруппы $A_1, \ldots, A_t \in \mathfrak{F}$, что $G = A_t A_j$ для всех $i \neq j$; (2) индексы $|G:N_G(A_t)|, \ldots, |G:N_G(A_t)|$ (соответственно индексы $|G:A_{t-1}|, |G:N_G(A_t)|$) попарно σ -взаимно просты. В работе изучаются свойства и приложения (слабо) \mathcal{S}_{σ}^i -замкнутых и (слабо) \mathcal{M}_{σ}^i -замкнутых классов конечных групп.

Ключевые слова: конечная группа, формационная σ -функция, σ -локальная формация, (слабо) S_{σ}^{t} -замкнутый класс групп, (слабо) M_{σ}^{t} -замкнутый класс групп.

Throughout this paper, all groups are finite. Let $\sigma = \{\sigma_i \mid i \in I\}$ be some partition of the set of all primes \mathbb{P} . The natural numbers n and m are called σ -coprime if for every σ_i such that $\sigma_i \cap \pi(n) \neq \emptyset$ we have $\sigma_i \cap \pi(m) = \emptyset$. Let t > 1 be a natural number and let \mathfrak{F} be a class of groups. Then we say that \mathfrak{F} is: (i) \mathcal{S}_{σ}^i -closed (respectively weakly \mathcal{S}_{σ}^i -closed) provided \mathfrak{F} contains each finite group G which satisfies the following conditions: (1) G has subgroups $A_1, ..., A_i \in \mathfrak{F}$ such that $G = A_i A_j$ for all $i \neq j$; (2) The indices $|G:N_G(A_1)|,...,|G:N_G(A_i)|$ (respectively the indices $|G:A_1|,...,|G:A_{i-1}|,|G:N_G(A_i)|$) are pairwise σ -coprime); (ii) \mathcal{M}_{σ}^i -closed (respectively weakly \mathcal{M}_{σ}^i -closed) provided \mathfrak{F} contains each finite group G which satisfies the following conditions: (1) G has modular subgroups $A_1,...,A_i \in \mathfrak{F}$ such that $G = A_i A_j$ for all $i \neq j$; (2) The indices $|G:N_G(A_1)|,...,|G:N_G(A_i)|$ (respectively the indices $|G:A_1|,...,|G:N_G(A_i)|$) are pairwise σ -coprime. In this paper, we study properties and applications of (weakly) \mathcal{S}_{σ}^i -closed and (weakly) \mathcal{M}_{σ}^i -closed classes of finite groups.

Keywords: finite group, formation σ -function, σ -local formation, (weakly) S_{σ}^{t} -closed class of groups, (weakly) \mathcal{M}_{σ}^{t} -closed class of groups.

1 Preliminaries

We use the terminology in [1]–[3]. Throughout this paper, all groups are finite and G always denotes a finite group. Moreover, \mathbb{P} is the set of all primes, $\pi = \{p_1, ..., p_n\} \subseteq \mathbb{P}$ and $\pi' = \mathbb{P} \setminus \pi$. If n is an integer, the symbol $\pi(n)$ denotes the set of all primes dividing n; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G.

A subgroup M of G is called *modular* if M is a modular element (in the sense of Kurosh [4, p. 43]) of the lattice $\mathcal{L}(G)$ of all subgroups of G, that is,

(i) $\langle X, M \cap Z \rangle = \langle X, M \rangle \cap Z$ for all $X \leq G$, $Z \leq G$ such that $X \leq Z$, and

(ii) $\langle M, Y \cap Z \rangle = \langle M, Y \rangle \cap Z$ for all $Y \leq G$, $Z \leq G$ such that $M \leq Z$.

In what follows, σ is some partition of \mathbb{P} , that is, $\sigma = \{\sigma_i \mid i \in I\}$, where $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$; $\Pi \subseteq \sigma$ and $\Pi' = \sigma \setminus \Pi$.

By the analogy with the notation $\pi(n)$, we write $\sigma(n)$ [5] to denote the set

$$\{\sigma_i \mid \sigma_i \cap \pi(n) \neq \emptyset\}; \ \sigma(G) = \sigma(|G|)$$

© Skiba A.N., 2018

and $\sigma(\mathfrak{M}) = \bigcup_{G \in \mathfrak{M}} \sigma(G)$. The natural number n and m are called σ -coprime if $\sigma(n) \cap \sigma(m) = \emptyset$.

Recall that a class of groups \mathfrak{F} is called a *formation* if: (i) $G/N \in \mathfrak{F}$ whenever $G \in \mathfrak{F}$, and (ii) $G/(N \cap R) \in \mathfrak{F}$ whenever $G/N \in \mathfrak{F}$ and $G/R \in \mathfrak{F}$.

Following [6], we call any function f of the form

 $f: \sigma \to \{\text{formations of groups}\}$ a formation σ -function, and we put $LF_{\sigma}(f) = (G \mid G/O_{\sigma,\sigma_i}(G) \in f(\sigma_i) \text{ for all } \sigma_i \in \sigma(G)).$

Definition 1.1 [6]. (i) If for some formation σ -function f we have $\mathfrak{F} = LF_{\sigma}(f)$, then we say that the class \mathfrak{F} is σ -local and f is a σ -local definition of \mathfrak{F} .

- (ii) We suppose that every formation is 0-multiply σ -local; for n > 0, we say that the formation \mathfrak{F} is *n*-multiply σ -local provided either $\mathfrak{F} = (1)$ is the class of all identity groups or $\mathfrak{F} = LF_{\sigma}(f)$, where $f(\sigma_i)$ is (n-1)-multiply local for all $\sigma_i \in \sigma(\mathfrak{F})$.
- (iii) The formation \mathfrak{F} is said to be *totally* σ -lo-cal provided \mathfrak{F} is *n*-multiply σ -local for all $n \in \mathbb{N}$.

In this paper, we discuss applications of the theory of σ -local formations [6] in the study of factorizations of groups.

Remark 1.2. (i) In view of [7, IV, 3.2], in the classical case when $\sigma = \{\{2\}, \{3\},...\}$, a formation σ -function and a σ -local formation are, respectively, a formation function and a local formation in the usual sense [7, IV, Definition 3.1].

(ii) By definition, the class of all identity groups (1) is totally σ -local and it is contained in $LF_{\sigma}(f)$. Moreover, (1) = $LF_{\sigma}(h)$, where $h(\sigma_i) = \emptyset$ for all σ_i .

If t > 1 is a natural number, then the class of groups \mathfrak{F} is said to be Σ_t -closed (Shemetkov [8]) provided \mathfrak{F} contains all groups G which satisfy the following condition: G has subgroups $A_1, ..., A_t \in \mathfrak{F}$ whose indices $|G:A_1|, ..., |G:A_t|$ are pairwise coprime. The theory of Σ_t -closed classes of soluble groups and various its applications were considered by Otto-Uwe-Kramer in [9] (see also [8, Chapter 1]).

In this paper we consider the following generalizations of this concept.

Definition 1.3 [10]. Let t > 1 be a natural number and let \mathfrak{F} be a class of groups. Then we say that \mathfrak{F} is \mathcal{S}_{σ}^{t} -closed (respectively \mathcal{M}_{σ}^{t} -closed) if \mathfrak{F} contains every group G for which the following conditions hold:

(1) G has subgroups (respectively modular subgroups) $A_1,...,A_i \in \mathfrak{F}$ such that $G = A_i A_j$ for all $i \neq j$;

(2) The indices $|G:N_G(A_1)|,...,|G:N_G(A_t)|$ are pairwise σ -coprime.

Definition 1.4 [10]. Let t > 1 be a natural number and let \mathfrak{F} be a class of groups. Then we say that \mathfrak{F} is *weakly* S'_{σ} -closed (respectively weakly M'_{σ} -closed) if \mathfrak{F} contains every group G for which the following conditions hold:

- (1) G has subgroups (respectively modular subgroups) $A_1,...,A_i \in \mathfrak{F}$ such that $G=A_iA_j$ for all $i\neq j$;
- (2) The indices $|G:A_1|,...,|G:A_{t-1}|,|G:N_G(A_t)|$ are pairwise σ -coprime.

In the case when $\sigma = \sigma^1 = \{\{2\}, \{3\},...\}$, the symbol σ^1 will be omitted. Hence the class $\mathfrak F$ is $\mathcal S^t$ -closed (respectively is *weakly* $\mathcal S^t$ -closed) if it is $\mathcal S^t_{\sigma^1}$ -closed (respectively weakly $\mathcal S^t_{\sigma^1}$ -closed); the class $\mathfrak F$ is $\mathcal M^t$ -closed (respectively is weakly $\mathcal M^t$ -closed) if it is $\mathcal M^t_{\sigma^1}$ -closed (respectively weakly $\mathcal M^t_{\sigma^1}$ -closed).

2 Main Results

Recall that G is said to be: σ -primary [11] if G is a σ_i -group for some i; σ -decomposable (Shemetkov [8]) or σ -nilpotent (Guo and Skiba [12]) if $G = G_1 \times ... \times G_n$ for some σ -primary groups $G_1,...,G_n$; σ -soluble [11] if every chief factor of G is σ -primary.

We say that G is meta- σ -nilpotent if G has a normal subgroup N such that N and G/N are σ -nilpotent.

Our main result is the following

Theorem 2.1 [10]. The following statements hold:

- (i) The formation of all meta- σ -nilpotent groups \mathfrak{N}_{σ}^2 is \mathcal{S}_{σ}^4 -closed and \mathcal{M}_{σ}^3 -closed.
- (ii) Every σ -local formation of meta- σ -nil-potent groups is weakly S^4_{σ} -closed.
- (iii) Every 2-multiply σ -local formation of meta- σ -nilpotent groups is weakly \mathcal{M}^3 -closed.

Before continuing, consider some corollaries of Theorem 2.1. First note that in view of Remark 1.2 (i), we get from this result the following

Corollary 2.2. *The following statements hold:*

- (i) The formation of all meta-nilpotent groups \mathfrak{N}^2 is S^4 -closed and \mathcal{M}^3 -closed.
- (ii) Every local formation of meta-nilpotent groups is weakly S^4 -closed.
- (iii) Every 2-multiply local formation of metanilpotent groups is weakly \mathcal{M}^3 -closed.

It is clear that every Σ_t -closed class is also weakly S^4 -closed. Hence we get from Corollary 2.2 the following

Corollary 2.3 (Otto-Uwe-Kramer [9]). Every local formation of meta-nilpotent groups is Σ_4 -closed.

From Corollary 2.2 we get also the following two new results

Corollary 2.4. Suppose that G has supersoluble subgroups A_1, A_2, A_3, A_4 such that $G = A_i A_j$ for all $i \neq j$, and the indices

$$|G:A_1|, |G:A_2|, |G:A_3|, |G:N_G(A_4)|$$

are pairwise coprime. Then G is supersoluble.

Corollary 2.5. Suppose that G has subgroups A_1, A_2, A_3, A_4 such that $G = A_i A_j$ and A'_i is nilpotent for all $i \neq j$, and the indices

$$|G: A_1|, |G: A_2|, |G: A_3|, |G: N_G(A_4)|$$

are pairwise coprime. Then G' is nilpotent.

From Corollary 2.4 we get

Corollary 2.6 (Doerk [13]). Suppose that G has supersoluble subgroups A_1, A_2, A_3, A_4 such that $G = A_i A_i$ for all $i \neq j$, and the indices

$$|G:A_1|, |G:A_2|, |G:A_3|, |G:A_4|$$

are pairwise coprime. Then G is supersoluble.

From Corollary 2.5 we get

Corollary 2.7 (Friesen [14]). Suppose that G has subgroups A_1, A_2, A_3, A_4 such that $G = A_i A_j$ and A'_i is nilpotent for all $i \neq j$, and the indices

$$\mid G:A_{1}\mid,\mid G:A_{2}\mid,\mid G:A_{3}\mid,\mid G:A_{4}\mid$$

are pairwise coprime. Then G' is nilpotent.

Let $\pi = \{p_1, p_2, ..., p_n\}$. Then G is said to be π -nilpotent (respectively π -decomposable) if $G = O_{p_1}(G) \times \cdots \times O_{p_n}(G) \times O_{\pi'}(G)$ (if, respectively, if $G = O_{\pi}(G) \times O_{\pi'}(G)$).

In fact, in the theory of the π -soluble groups we deal with the partition $\sigma = \{\{p_1\},...,\{p_n\},\pi'\}$ of \mathbb{P} . In this case we get from Theorem 2.1 the following

Corollary 2.8. Suppose that G has meta- π -nil-potent subgroups A_1, A_2, A_3, A_4 such that $G = A_i A_j$ for all $i \neq j$, and the indices

$$|G:N_G(A_1)|,...,|G:N_G(A_4)|$$

are pairwise coprime and also $|G:N_G(A_i)|$ is either a π -number or a π '-number for all i. Then G is meta- π -nilpotent.

If for a subgroup A of G we have $\sigma(|A|) \subseteq \Pi$ and $\sigma(|G:A|) \subseteq \Pi'$, then A is said to be a *Hall* Π -subgroup [5] of G. We say that G is Π -closed if G has a normal Hall Π -subgroup.

The proof of Theorem 2.1 consists of many steps and the next three basis theorems and the proposition are the main stages of it.

Theorem 2.9 [10]. (i) The class of all σ -soluble Π -closed groups \mathfrak{F} is \mathcal{S}_{σ}^{3} -closed.

(ii) The class of all σ -nilpotent groups \mathfrak{N}_{σ} is \mathcal{S}^3_{σ} -closed.

(iii) Every formation of σ -nilpotent groups \mathfrak{M} is weakly \mathcal{S}_{σ}^{3} -closed.

In the case when $\sigma = \sigma^1 = \{\{2\}, \{3\},...\}$ we get from Theorem 2.9 the following results.

Corollary 2.10. Suppose that

$$G = A_1 A_2 = A_2 A_3 = A_1 A_3$$

where A_1 , A_2 and A_3 are soluble subgroups of G. If the three indices $|G:N_G(A_1)|$, $|G:N_G(A_2)|$, $|G:N_G(A_3)|$ are pairwise coprime, then G is soluble.

Corollary 2.11 (Wielandt [15]). If G has three soluble subgroups A_1 , A_2 and A_3 whose indices $|G:A_1|$, $|G:A_2|$, $|G:A_3|$ are pairwise coprime, then G is itself soluble.

Corollary 2.12. Suppose that

$$G = A_1 A_2 = A_2 A_3 = A_1 A_3,$$

where A_1 , A_2 and A_3 are abelian subgroups of G. If the three indices $|G:A_1|$, $|G:A_2|$, $|G:N_G(A_3)|$ are pairwise coprime, then G is abelian.

Corollary 2.13. Suppose that

$$G = A_1 A_2 = A_2 A_3 = A_1 A_3$$
,

where A_1 , A_2 and A_3 are nilpotent subgroups of G. If the three indices $|G:A_1|$, $|G:A_2|$, $|G:N_G(A_3)|$ are pairwise coprime, then G is nilpotent.

Corollary 2.14 (Kegel [16]). Suppose that $G = A_1 A_2 = A_2 A_3 = A_1 A_3$, where A_1 , A_2 and A_3 are nilpotent subgroups of G. If the three indices $|G:A_1|$, $|G:A_2|$, $|G:A_3|$ are pairwise coprime, then G is nilpotent.

Corollary 2.15 (Doerk [13]). Suppose that $G = A_1 A_2 = A_2 A_3 = A_1 A_3$, where A_1 , A_2 and A_3 are abelian subgroups of G. If the three indices $|G:A_1|$, $|G:A_2|$, $|G:A_3|$ are pairwise coprime, then G is abelian.

In the case when $\sigma = \{\{p_1\},...,\{p_n\},\pi'\}$ we get from Theorem 2.9 the following results.

Corollary 2.16. Suppose that G has π -nilpotent subgroups A_1, A_2, A_3 such that $G = A_i A_j$ for all $i \neq j$, and the indices

$$|\,G\,{:}\,N_G(A_1)\,|,|\,G\,{:}\,N_G(A_2)\,|,|\,G\,{:}\,N_G(A_3)\,|$$

are pairwise coprime and also $|G:N_G(A_i)|$ is either a π -number or a π' -number for all i. Then G is π -nilpotent.

Corollary 2.17. Suppose that G has π -nilpotent subgroups A_1, A_2, A_3 such that $G = A_i A_j$ for all $i \neq j$, and the indices

$$|G: A_1|, |G: A_2|, |G: N_G(A_3)|$$

are pairwise coprime and also every of the indices $|G:A_1|, |G:A_2|, |G:N_G(A_3)|$ is either a π -number or a π' -number. If the Sylow subgroups of A_i are abelian for all i, then the Sylow subgroups of G are also abelian.

Theorem 2.18 [10]. If $\mathfrak{F} = LF_{\sigma}(f)$ is a σ -local formation of σ -soluble groups, where for every i the formation $f(\sigma_i)$ is (weakly) \mathcal{S}_{σ}^t -closed, then the class \mathfrak{F} is (weakly) $\mathcal{S}_{\sigma}^{t+2}$ -closed.

Proposition 2.19 [6]. Every σ -local formation of σ -soluble groups \mathfrak{F} possesses a unique σ -local definition F such that for every σ -local definition f of \mathfrak{F} and for every $\sigma_i \in \sigma$ the following inclusions hold:

$$f(\sigma_i) \cap \mathfrak{F} \subseteq F(\sigma_i) = \mathfrak{S}_{\sigma_i} F(\sigma_i) \subseteq \mathfrak{F}.$$

In this proposition the symbol \mathfrak{S}_{σ_i} denotes the class of all σ -soluble σ_i -soluble groups, $\mathfrak{S}_{\sigma_i}F(\sigma_i)$ denotes the class of all σ -soluble groups G such that for some normal subgroup N of G we have $G/N \in F(\sigma_i)$.

We call the function F in Proposition 2.19 the canonical σ -local definition of \mathfrak{F} .

Our fourth basic result is the following

Theorem 2.20 [10]. If $\mathfrak{F} = LF_{\sigma}(F)$ is a σ -local formation of σ -soluble groups, where F is the canonical σ -local definition of \mathfrak{F} and for every i the formation $F(\sigma_i)$ is is (weakly) \mathcal{S}_{σ}^t -closed, then the formation \mathfrak{F} is (weakly) $\mathcal{S}_{\sigma}^{t+1}$ -closed.

REFERENCES

- 1. *Скиба*, *А.Н.* Оп σ -properties of finite groups I / А.Н. Скиба // Проблемы физики, математики и техники. 2014. № 4 (21). С. 89–96.
- 2. *Скиба*, *А.Н.* On σ -properties of finite groups II / А.Н. Скиба // Проблемы физики, математики и техники. 2015. № 3 (24). С. 70–83.
- 3. *Скиба*, *А.Н.* On σ -properties of finite groups III / А.Н. Скиба // Проблемы физики, математики и техники. 2016. № 1 (26). С. 52–62.
- 4. Schmidt, R. Subgroup Lattices of Groups / R. Schmidt. Berlin, New York: Walter de Gruyter, 1994.

- 5. *Skiba*, *A.N.* On some results in the theory of finite partially soluble groups / A.N. Skiba // Commun. Math. Stat. 2016. Vol. 4, № 3. P. 281–309.
- 6. *Skiba*, *A.N.* On σ -local formations of finite groups / A.N. Skiba // Preprint, 2017.
- 7. *Doerk*, K. Finite Soluble Groups / K. Doerk, T. Hawkes. Berlin, New York: Walter de Gruyter, 1992.
- 8. Shemetkov, L.A. Formations of finite groups / L.A. Shemetkov. Moscow: Nauka, Main Editorial Board for Physical and Mathematical Literature, 1978.
- 9. *Kramer*, *O.-U*. Endliche Gruppen mit Untergruppen mit paarweise teilerfremden Indizes / O.-U. Kramer // Math. Z. 1974. Vol. 139, № 1. S. 63–68.
- 10. *Skiba*, *A.N.* A generalization of the Kramer's theory / A.N. Skiba // Preprint, 2017.
- 11. *Skiba*, *A.N.* On σ -subnormal and σ -permutable subgroups of finite groups / A.N. Skiba // J. Algebra. 2015. Vol. 436. P. 1–16.
- 12. *Guo*, *W*. Finite groups with permutable complete Wielandt sets of subgroups / W. Guo, A.N. Skiba // J. Group Theory. 2015. Vol. 18. P. 191–200.
- 13. *Doerk*, *K*. Minimal nicht überauflösbare, endliche Gruppen / K. Doerk // Math. Z. 1966. Vol. 91. S. 198–205.
- 14. *Friesen*, *D*. Products of normal supersoluble subgroups / D. Friesen // Proc. Amer. Math. Soc. 1971. Vol. 30. P. 46–48.
- 15. *Wielandt*, *H*. Über die Normalstrukture von mehrfach faktorisierbaren Gruppen / H. Wielandt // B. Austral Math. Soc. 1960. Vol. 1. P. 143–146
- 16. *Kegel*, *O.H*. Zur Struktur mehrfach faktorisierbarer endlicher Gruppen / O.H. Kegel // Math. Z. 1965. Vol. 87. S. 409–434.

Поступила в редакцию 16.11.17.